Control of PbI$_2$ nucleation and crystallization: towards efficient perovskite solar cells based on vapor-assisted solution process

To cite this article: Chongqiu Yang et al 2018 Mater. Res. Express 5 045507

View the article online for updates and enhancements.
Control of PbI$_2$ nucleation and crystallization: towards efficient perovskite solar cells based on vapor-assisted solution process

Chongqiu Yang1,2,4, Yanke Peng2,1, Terrence Simon3 and Tianhong Cui1,4

1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
2 Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
3 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, People's Republic of China
4 Authors to whom any correspondence should be addressed.

E-mail: yangchongqiu@hotmail.com and tcui@me.umn.edu

Keywords: perovskite, solar cell, lead iodide

Abstract
Perovskite solar cells (PSC) have outstanding potential to be low-cost, high-efficiency photovoltaic devices. The PSC can be fabricated by numerous techniques; however, the power conversion efficiency (PCE) for the two-step-processed PSC falls behind that of the one-step method. In this work, we investigate the effects of relative humidity (RH) and dry air flow on the lead iodide (PbI$_2$) solution deposition process. We conclude that the quality of the PbI$_2$ film is critical to the development of the perovskite film and the performance of the PSC device. Low RH and dry air flow used during the PbI$_2$ spin coating procedure can increase supersaturation concentration to form denser PbI$_2$ nuclei and a more suitable PbI$_2$ film. Moreover, airflow-assisted PbI$_2$ drying and thermal annealing steps can smooth transformation from the nucleation stage to the crystallization stage.

1. Introduction
Development of perovskite solar cells has shown impressive progress in just a few years, recently yielding a certified maximum power conversion efficiency of 22.1% [1]. This rapid and dramatic improvement sets it apart from conventional solar cells, such as silicon and copper indium gallium selenide cells [2]. Perovskite films can be obtained by many techniques, including solution process (one-step spin coating [3, 4], two-step spin coating [5] or dipping [6]), vapor-assisted solution process [7–9], and dual vapor deposition[10–13]. However, the vapor-assisted solution process is more easily controlled in balancing the PbI$_2$ and perovskite layer growth. PbI$_2$ layer thickness is primarily determined by the PbI$_2$ precursor film thickness [14–16]. PbI$_2$ and perovskite layer growth are separated into two independent stages, although their film qualities are strongly correlated. Vapor-assisted crystal growth enables homogeneous perovskite films with fewer defects and well-defined grain structures, suitable for photovoltaic applications [15].

To obtain excellent performance of a PSC, uniform and dense perovskite films with excellent crystal quality must be grown. For the vapor-assisted solution process, perovskite CH$_3$NH$_3$PbI$_3$ (MAPbI$_3$) formation can be regarded as an intercalation reaction between a precursor PbI$_2$ crystal film and vapor of CH$_3$NH$_3$I (MAI) [17]. Therefore, the perovskite film is primarily determined by the PbI$_2$ precursor film and the chemical vapor deposition (CVD) process. Our previous work indicated that the homogeneous perovskite crystallization process can be precisely managed by control of the temperature, pressure, time, vapor transport and diffusion during CVD deposition [18]. Much work has shown that the morphology and precursor solution of PbI$_2$ significantly influence the perovskite. Cao et al [17, 19] and Yin et al [7] introduced a strong Lewis-base additive to the PbI$_2$/DMF precursor solution to get a porous PbI$_2$ morphology, to facilitate fully the intercalation reaction. Wu et al [20] obtained a high quality PbI$_2$ film with full coverage by adding a controllable amount of water in the PbI$_2$/DMF solution. The final perovskite film was highly pure, smooth and dense, and without a single pinhole. Liu et al [21] developed a mesoporous PbI$_2$ scaffold by delicate nucleation control, showing...
controllable influences on crystallization of the perovskite film. Hwang et al.22 adopted a slot-die coating with a gas quenching process for fabrication of a pinhole-free PbI\textsubscript{2} layer, and indicated that the perovskite solar cell performance was strongly dependent on the PbI\textsubscript{2} layer morphology.

Relative humidity (RH) is reported as a significant factor influencing perovskite film formation and degradation when using the one-step spin coating process23. Gao et al.24 investigated the influence of ambient humidity (RH 1\%~70\%) on crystallization and surface morphology of the one-step, spin-coating process for perovskite MAPbI\textsubscript{3} films and found that the uniformity of coverage of the perovskite film decreases obviously with increasing RH. Wozny et al.25 observed similar phenomena in the one-step, spin-coated formamidinium (FA)-based perovskite film. Additionally, dry gas flow (air, argon, or nitrogen) was introduced in the one-step deposition method to get full-coverage and smooth perovskite films26–28. For the two-step deposition method, since the completed perovskite film structure and the eventual solar cell performance are strongly dependent on the precursor PbI\textsubscript{2} film, the effects of RH and gas flow during the PbI\textsubscript{2} film growth must be addressed.

Here, we aim to clarify the role of RH and air flow on PbI\textsubscript{2} nucleation and crystallization during the spin coating, drying, and annealing stages. It is found that spin coating PbI\textsubscript{2} films at different RH levels can influence the morphology of the perovskite film, resulting in different PCE values. A lower RH facilitates solvent evaporation during spinning to achieve a higher PbI\textsubscript{2} supersaturation concentration. This increased supersaturation promotes growth of uniform PbI\textsubscript{2} nuclei and full-coverage growth of the layer29, enabling homogeneous perovskite layer growth. Further study indicates that airflow-assisted spinning followed by drying steps can increase supersaturation concentration to get more uniform PbI\textsubscript{2} nuclei coverage. Moreover, since thermal annealing is always done with the hot plate set at \(\sim100\) °C, while the airflow is introduced at room temperature, airflow assisted annealing can slow the PbI\textsubscript{2} crystallization rate to relieve the crystal stress. A uniform and defect-free PbI\textsubscript{2} film benefits the perovskite film growth and PSC performance.

\section{2. Experimental methods}

\subsection{2.1. Device fabrication}

The layer-patterned FTO glass (Tec15, Pilkington) was sequentially ultrasonically cleaned with deionized water, acetone, and isopropyl alcohol (IPA), followed by ultraviolet ozone treatment. Next, a compact TiO\textsubscript{2} layer was deposited by spin coating 0.15 M titanium diisopropoxide bis (acetylacetonate) (75 wt.% in isopropanol, Sigma-Aldrich) in anhydrous ethanol (\(\geq99.5\%\), Sigma-Aldrich) twice at 4000 rpm for 30 s, drying at 125 °C for 5 min, and annealing at 500 °C in air for 45 min. Perovskite films were grown by the two-step, vapor-assisted solution process. A 1 M PbI\textsubscript{2} (>99.99\%, Xi’an Polymer Light Technology, China) solution in N,N-Dimethylformamide (DMF, anhydrous, 99.8\%, Sigma-Aldrich) and Dimethyl sulfoxide (DMSO, anhydrous, \(\geq99.9\%\), Sigma-Aldrich) (DMF:DMSO = 4:1) was spin-coated on the TiO\textsubscript{2} at 4000 rpm for 30 s, and then annealed at 100 °C for 10 min. For the airflow-assisted PbI\textsubscript{2} deposition process, an air flow with supply pressure of 69 kPa (10 psi) was introduced during the spinning (10 s after spinning started), the drying, or the annealing stages. The PbI\textsubscript{2} substrates were transferred to the vapor deposition chamber designed and built in the UMN lab (inner diameter of 40 mm, length of 200 mm, figure 1). MAI powder (>99.5\%, Xi’an Polymer Light Technology, China) in transparent quartz crucibles was placed in the chamber regularly to obtain a uniform vapor flow distribution to grow a homogeneous perovskite film18. The chamber was transferred to the middle-zone of a commercial, single-zone CVD furnace chamber (inner diameter of 120 mm, heating zone length of 880 mm, MTI Corporation). The vapor deposition process of the perovskite film was conducted at 110 °C for 7 h with a vacuum of \(\sim3\) mTorr. The hole-transporting layer was deposited on the perovskite film by spin coating a solution of spiro-MeOTAD (72.3 mg, Lumtech, Taiwan) mixed with 4-tert-butyl pyridine (28.8 \(\mu\)L, Sigma-Aldrich) and lithium bis (trifluoromethanesulfonyl) imide solution (17.5 \(\mu\)L, Li-TFSI, 520 mg Li-TSFI in 1 ml acetonitrile, Sigma-Aldrich) in chlorobenzene (1 mL, Sigma-Aldrich) at 4000 rpm for 30 s. Finally, silver electrodes of 70 nm were deposited by thermal evaporation through a shadow mask. The active area of the complete device was 0.09 cm2. All devices were fabricated in ambient air.

\subsection{2.2. Characterization}

The surface and cross-section morphologies were investigated by a Field Emission Gun Scanning Electron Microscope (SEM, JEOL 6500). The crystallinity of the perovskite films was characterized by x-ray diffraction (XRD, Bruker-AXS D5005, Siemens). Current density–voltage (\(J–V\)) measurements of the solar cells were performed by an electrochemical detection workstation (CHI 630C). The AM 1.5 G illumination (100 mW cm-2) was generated by a xenon-based, Newport Co. simulator (67005), calibrated by a Newport Co. radiant power meter (70260) and probe (70268).
3. Results and discussion

3.1. Spin-coating PbI₂ at various relative humidity (RH) values

Developing a uniform and dense perovskite film is critical to achieving good performance in perovskite solar cells. Relative humidity is reported to be a factor influencing perovskite film growth and affecting PCE performance and stability of perovskite solar cells [30, 31]. Here, we propose that RH also influences PbI₂ film growth and determines the resultant perovskite film quality and final device performance.

Figure 2 presents surface morphologies of PbI₂ and perovskite films. A layer of PbI₂ was spin-coated at various RH levels then allowed to react to form perovskite using a modified CVD process, as discussed in the Experimental section. Using DMSO and DMF as solvents to the PbI₂, the surface is formed with the morphology shown in figures 2(a) and (b). This is consistent with reports in the literature [6, 17, 32]. Porous PbI₂ is beneficial for it allows vapor MAI to penetrate its deep sites to ensure a complete transformation reaction of the perovskite. At a high RH of 55%, PbI₂, the surface shows large porous holes with indistinguishable block grain crystals, figure 2(a). As the RH is decreased to 16%, figure 2(b), smaller voids become visible on the PbI₂ surface and small-grain crystals can be recognized. The resulting CVD-processed perovskite films also show differences. Figure 2(c) presents the perovskite film grown from a 55% RH-deposited PbI₂ layer. Discontinuous cracks between small perovskite grain boundaries appear. As shown in figures 2(d)–(f), PbI₂ layers deposited with RH ≤ 45% develop uniform and continuous, small perovskite grains.

Figure 3 shows the J–V curves of PSCs prepared from PbI₂ layers deposited under different RH values. Corresponding photovoltaic performance values are presented in table 1. As the RH decreases, the PCE of the PSC devices increases rapidly. With a RH of 55%, the filling factor of the J–V curves is low due to poor perovskite film quality, as shown in figure 2(c). Moreover, the discontinuous cracks prompt recombination of holes and electrons, reducing low open-circuit voltage. When the RH is lower than 45%, Vₜₙₘₜ gets stabilized at ~0.9 V, consistent with the uniform and dense perovskite surface morphologies in figure 2. While at the lower RH, better grain crystals of PbI₂ and improved perovskite films enhance light absorption to increase current density. Hysteresis of J–V is a notorious phenomenon in planar PSCs. It is caused by surface and bulk defects and ion migration in the perovskite film, as reported [33, 34]. The defects could act as traps for electrons or holes, filling and emptying with forward and reverse scans [35]. PCBM is reported to passivate and reduce the defects efficiently, leading to negligible hysteresis [36, 37]. However, the exact physical mechanisms associated with PCBM were not fully studied. For example, the potential PCBM-related reduction of ion migration at grain boundaries could also be a reason for minimizing J–V hysteresis [34]. Some theoretical and experimental studies showed that I⁻ ions are easily photo-activated or electro-activated to move through grain boundaries. The accumulation of ions at the interfaces might further enhance the generation of local defects in the lattice, resulting in an enhancement of ion movement through drift and diffusion [33, 38, 39]. More study is needed to identify and resolve this notorious issue, and no further discussion is given in this paper. A serious hysteresis exists in some devices of the present study, even for the 16% RH-deposited PbI₂ device, as shown in figure 3(b).
3.2. Airflow-assisted PbI$_2$ deposition processes

Figure 4 illustrates the airflow-assisted PbI$_2$ deposition process, including corresponding photographs for each step. Solvents of PbI$_2$ solution are DMF and DMSO. Wu et al [6] showed that a DMSO-based, fresh-spun PbI$_2$ film with light yellow color maintains its non-crystallized amorphous feature, certified by the absorption and XRD characterization. Here, as shown in figure 4, the spin-coated and further dried PbI$_2$ films with airflow assistance maintains a light yellow color, indicating its amorphous feature. In the next step, the PbI$_2$ film still keeps its light yellow color even with airflow-assisted thermal annealing at 100 °C. The deposited PbI$_2$ layer can be quickly transferred to a deep yellow color in 1 min using a conventional thermal annealing step without airflow assistance, as shown in the fourth photograph in figure 4. Essentially, airflow assistance delays the color change or delays the conversion of PbI$_2$ from an amorphous state to a crystallized state during thermal annealing. It is proposed that room-temperature airflow retards the heating effect on a PbI$_2$ film, slowing down its crystallization rate.
The air flow-assisted, spin-deposited PbI$_2$ film was converted to a perovskite film by the CVD process, as discussed in the Experimental section. The crystallinity of each perovskite film was characterized by an XRD curve, as shown in figure 5(a). The absence of PbI$_2$ diffraction peaks in all the XRD curves indicates that the PbI$_2$ was fully reacted to produce perovskite crystals. The perovskite diffraction peaks are consistent with reports in the literature [6, 32]. Using a conventional PbI$_2$ deposition process, without air flow assistance, we see that the (110) peak of the as-grown perovskite film is the lowest of the group (black curve in figure 5(a)), indicating its poor crystallinity. In accordance with its surface morphology, as shown in figure 5(b), the perovskite film shows incomplete coverage with large pinholes and indistinguishable grain crystals. The air flow then was introduced during the PbI$_2$ spin coating procedure and the XRD peak of the as-grown perovskite film increased greatly (red curve in figure 5(a)). Also, the perovskite film showed dense crystal grains with small pinholes, see figure 5(c).

Using a conventional spin-coated PbI$_2$ film, but adding an air flow-assisted drying step yielded an XRD peak for the CVD-processed perovskite film that is improved significantly (blue curve in figure 5(a)). The surface-SEM image in figure 5(d) shows a well-covered perovskite film without pinholes, but also shown are small cracks between grain boundaries. Coupling with an air flow-assisted thermal annealing step following the conventional

Table 1. Photovoltaic performance of PSC devices shown in figure 3.

<table>
<thead>
<tr>
<th>RH</th>
<th>J_{sc} (mA cm$^{-2}$)</th>
<th>V_{oc} (V)</th>
<th>FF</th>
<th>PCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>55%</td>
<td>13.88</td>
<td>0.8</td>
<td>0.27</td>
<td>3%</td>
</tr>
<tr>
<td>45%</td>
<td>11.06</td>
<td>0.9</td>
<td>0.52</td>
<td>5.2%</td>
</tr>
<tr>
<td>35%</td>
<td>14.78</td>
<td>0.88</td>
<td>0.61</td>
<td>8%</td>
</tr>
<tr>
<td>16%</td>
<td>16.5</td>
<td>0.87</td>
<td>0.60</td>
<td>8.53%</td>
</tr>
<tr>
<td>16%</td>
<td>17.5</td>
<td>0.76</td>
<td>0.41</td>
<td>5.48%</td>
</tr>
</tbody>
</table>

Figure 3. (a) Reverse-scanned J–V curves of PSCs prepared from different PbI$_2$ films deposited under different RH values (b) J–V curve hysteresis of PSC prepared by spinning PbI$_2$ at 16% RH.

Figure 4. Schematic illustration and corresponding photographs of the air flow-assisted PbI$_2$ deposition process.
PbI\textsubscript{2} spin coating process, the XRD peak intensity of as-grown perovskite film did not change significantly (pink curve in figure 5(a)). However, the SEM picture of the as-grown perovskite film in figure 5(c) shows greatly improved surface coverage compared with figure 5(b), although the grain crystals are not dense enough, with large grain boundaries and small pinholes. If airflow is introduced during the PbI\textsubscript{2} spinning, drying and thermal annealing stages, a perovskite film with the largest XRD peak intensity of the group is obtained and crystallinity is optimum (lowest green curve in figure 5(a)). The surface morphology also shows dense and uniform perovskite grain crystals without pinholes, as shown in figure 5(f). As for the crystallinity of the resultant PbI\textsubscript{2} film, airflow assistance or low relative humidity can generate more PbI\textsubscript{2} nuclei, and the grown PbI\textsubscript{2} crystals are small and dense (figure 2(b)), and the corresponding PbI\textsubscript{2} crystallinity would be limited. However, the crystallinity and surface morphology of the reacted perovskite films are increased according to the figures 5(a) and (f), mainly due to the homogeneous reaction with growth from uniformly-distributed PbI\textsubscript{2} nuclei.

Figure 5. (a) XRD curves of PSC prepared from various PbI\textsubscript{2} films by airflow-assisted spinning, drying and thermal annealing at 55% RH. The corresponding SEM surface morphologies: (b) Without airflow-assist, (c) With airflow-assisted spinning, (d) With airflow-assisted drying, (e) With airflow-assisted thermal annealing, (f) With airflow-assisted spinning, drying, and thermal annealing.
The photovoltaic performance of PSC prepared from various air flow-assisted PbI$_2$ films is presented in figure 6 and table 2. The PSC based on the conventional PbI$_2$ deposition process without air flow assist shows very low J_{sc} and PCE, due to incomplete coverage of the perovskite film, cutting down light absorption in the layer. In addition, the poor perovskite crystallinity and large pinholes increase the inner resistance and enhance recombination of holes and electrons, deteriorating the FF and V_{oc}. The J_{sc} increases greatly after introducing air flow to the PbI$_2$ deposition process, consistent with the full-coverage perovskite film (figure 5), leading to increased efficiency of absorbing light. Simply introducing air flow during PbI$_2$ spinning or thermal annealing steps is not sufficient, the V_{oc} and FF are not sufficient due to perovskite crystals with pinholes (figures 5 and 6).

Air flow-assisted PbI$_2$ drying procedure seems to be essential to getting a perovskite film or PSC with good photovoltaic performance, especially as seen in the FF values, consistent with the large XRD peak intensity and dense perovskite surface quality. Further improved performance of PSC is obtained by adding airflow into the spinning, drying, and thermal annealing steps, as illustrated in figure 4. When the PbI$_2$ deposition process was operated at high RH of 55%, a PCE of 11.8% was attained (J_{sc} 18.42 mA cm$^{-2}$, V_{oc} 0.93 V and FF 0.69). While at low RH of 16%, a PCE of 12.4% was achieved with a high FF of 0.76, though with a large hysteresis.

Figure 7 illustrates the concentration changes during the air-flow-assisted PbI$_2$ deposition process. Generally, thin film growth involves two stages: nucleation and crystallization. Supersaturation is the driving potential for precipitating PbI$_2$ atoms, and, with higher supersaturation, a larger number of nuclei form on the substrate to capture more atoms for growing crystals. Figure 7 shows that in a conventional PbI$_2$ deposition process, without airflow assistance (a), high-speed spin coating causes the PbI$_2$ precursor solution to enter a limited supersaturation state. Then, high temperature annealing activates a fast-crystallization process. According to thin film growth theory, increased supersaturation is necessary to form uniformly-distributed nuclei and smooth layer growth [29, 40]. The solvents of PbI$_2$, DMF and DMSO, prefer to absorb water. Therefore, spin coating at high RH may increase the partial pressure of solvent DMF and DMSO in the ambient air, deteriorating solvent evaporation. The supersaturation concentration of the PbI$_2$ solution is then retarded, causing fewer nucleation sites and aggregated crystal growth with large pinholes, as shown in figure 2(a). This poor PbI$_2$ film generates an incompletely-covered perovskite film, as shown in figures 2(c) and 6(b). Airflow assisting during the spin coating step can hasten solvent evaporation rate, even at a RH of 55%, achieving a higher concentration of supersaturation and allowing the formation of more PbI$_2$ nuclei on the substrate. The resulting CVD-processed

Table 2. Photovoltaic performance of the PSC devices shown in figure 6(a).

<table>
<thead>
<tr>
<th></th>
<th>J_{sc} (mA cm$^{-2}$)</th>
<th>V_{oc} (V)</th>
<th>FF</th>
<th>PCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without airflow</td>
<td>7.78</td>
<td>0.76</td>
<td>0.4</td>
<td>2.4%</td>
</tr>
<tr>
<td>Airflow-assisted spinning</td>
<td>19.2</td>
<td>0.66</td>
<td>0.46</td>
<td>5.8%</td>
</tr>
<tr>
<td>Airflow-assisted drying</td>
<td>18.24</td>
<td>0.78</td>
<td>0.67</td>
<td>9.5%</td>
</tr>
<tr>
<td>Airflow-assisted thermal annealing</td>
<td>16.3</td>
<td>0.67</td>
<td>0.28</td>
<td>3.1%</td>
</tr>
<tr>
<td>Airflow-assisted spinning, drying and thermal annealing</td>
<td>18.42</td>
<td>0.93</td>
<td>0.69</td>
<td>11.8%</td>
</tr>
</tbody>
</table>

Figure 6. (a) Reverse-scanned J–V curves of PSC prepared from various PbI$_2$ films by air flow-assisted spinning, drying, or thermal annealing at 55% RH. (b) J–V curve for the device prepared by air flow-assisted PbI$_2$ spinning, drying, and thermal annealing at 16% RH.
perovskite film shows better coverage, see figure 5(c). Airflow-assisted drying of a spin-coated PbI$_2$ film can further increase supersaturation by evaporating more solvent, as shown in figure 7(b). Increased supersaturation can generate more uniform PbI$_2$ nuclei and benefit the subsequent growth of dense perovskite crystals, as shown in figure 5(d). Moreover, according to the concentration curve in figure 7(b), airflow-assisted drying can smooth the curvature variation and the corresponding PbI$_2$ transformation from the nucleation stage to the crystallization stage due to increased supersaturation. Figure 7(c) presents the effect of airflow-assisted thermal annealing on the concentration variation of a PbI$_2$ solution. As discussed before, room temperature airflow can retard the heating effect on as-deposited PbI$_2$ films, slowing down the crystal growth rate. For the optimized procedure, with airflow assisting in all spinning, drying, and thermal annealing steps, a very smooth concentration variation curve is found (figure 7(d)). High supersaturation concentration at the nucleation stage promotes dense and uniform PbI$_2$ nuclei to ensure full-coverage crystal growth. The subsequent slow crystallization rate guarantees a crystallinity that will passivate inner defects.

4. Conclusion

The effects of relative humidity and airflow assisting on the PbI$_2$ solution deposition process, perovskite film crystalline structure and PSC performance were investigated. This work demonstrates that for vapor-assisted, two-step deposition processing of PSC, the quality of the perovskite film and the performance of the PSC device are critically determined by the precursor PbI$_2$ film. Spin coating PbI$_2$ at low RH benefits toward generating smooth and dense PbI$_2$ films with uniform porous holes to facilitate the growth of the perovskite crystals. The PSC device based on 16% RH-deposited PbI$_2$ film leads to a PCE of 8.6%. Airflow assistance during the PbI$_2$ deposition process can further improve surface morphology and crystallinity of CVD-grown perovskite films. Airflow-assisted spinning and drying steps improve solvent evaporation to get high supersaturation concentration, forming dense and uniform PbI$_2$ nuclei during the nucleation stage. The airflow-assisted thermal annealing step can retard the heating effect on PbI$_2$ films, slowing down the crystallization rate and passivating the inner defects. The PSC based on airflow-assisted PbI$_2$ films achieves a PCE of 12.4%, when fabricated with a low RH of 16%. These insights into the nucleation and crystallization processes of PbI$_2$ films may aid in further understanding PSC devices and in designing enhanced PSC devices.
Acknowledgments

This work was partially supported by the China Scholarship Council. The fabrication and characterization work were carried out in the Minnesota Nano Center and Characterization Facility, University of Minnesota.

ORCID iDs

Chonggui Yang https://orcid.org/0000-0002-7042-6811
Tianhong Cui https://orcid.org/0000-0002-7427-2274

References

[38] Meloni S et al 2016 Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells *Nat. Commun.* 7 10334
